Московский государственный технический университет имени Н.Э. Баумана

М.Ю. Константинов

Математический маятник

Методические указания к лабораторной работе М-101

Москва Издательство МГТУ им. Н.Э. Баумана Рецензент: П.Н. Антонюк

Константинов М.Ю.

Математический маятник. Методические указания к лабораторной ра-

боте М-101 / М.Ю. Константинов. – М.: Изд-во МГТУ им. Н.Э. Баумана. –

15 c.

Приведены основные соотношения и понятия теории колебаний ма-

тематического маятника, а также практические указания, необходимые для

выполнения лабораторной работы M-101 «Математический маятник». От-

мечены особенности колебаний маятника при малых и больших амплиту-

дах колебаний. Контрольные вопросы к работе содержат как вопросы по

теории, так и задачи, позволяющие оценить область применимости ис-

пользуемых формул.

Для студентов всех специальностей, проходящих лабораторный прак-

тикум по курсу общей физики.

Библиогр. 4 назв.

Учебное издание

Константинов Михаил Юрьевич

2

Математический маятник

Лабораторная работа М-101

Цель работы: Исследование колебательного движения на примере колебаний математического маятника. Исследование зависимости периода колебаний от длины маятника и амплитуды колебаний. Определение ускорение свободного падения.

Введение

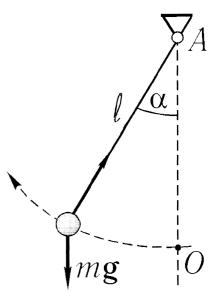
Колебательным движением механической системы называется периодическое движение системы в окрестности положения равновесия. Время T, за которое совершается одно полное колебание, называется ne-puodom колебаний. Величина ν , обратная периоду, называется μ колебаний $\nu = 1/T$.

В настоящей лабораторной работе изучаются колебания математического маятника.

Теоретическая часть

Математическим маятником называется материальная точка массы m, подвешенная на тонкой невесомой нерастяжимой нити длины l. На практике математический маятник реализуется с помощью шарика, диаметр которого d пренебрежимо мал по сравнению с длиной нити, т.е. d l (см. рисунок).

При отсутствии диссипативных сил сохра-



няется полная механическая энергия маятника, то есть, справедливо уравнение:

$$\frac{1}{2}I\left(\frac{d\alpha}{dt}\right)^{2} + mgl\left(1 - \cos\alpha\right) = E_{0} = \text{const}, \qquad (1)$$

где I - момент инерции шарика относительно точки подвеса A, $\alpha = \alpha(t)$ - угол отклонения маятника, m - масса шарика, g - ускорение свободного падения, l - расстояние от точки подвеса маятника A до центра тяжести шарика, E_0 - полная энергия маятника, равная

$$E_0 = mgl(1 - \cos \alpha_0),$$

где $\alpha_{_0}$ - амплитуда колебаний (угол максимального отклонения) маятника.

Так как по предположению диаметр шарика d пренебрежимо мал по сравнению с расстоянием l от точки подвеса маятника A до центра тяжести шарика, то есть d l, то $I = ml^2$ и уравнение (1) примет вид

$$\frac{1}{2}l\left(\frac{d\alpha}{dt}\right)^2 + g\left(\cos\alpha_0 - \cos\alpha\right) = 0.$$
 (2)

Дифференцируя уравнение (2) по времени, получим дифференциальное уравнение колебаний математического маятника

$$\frac{d^2\alpha}{dt^2} + \frac{g}{l}\sin\alpha = 0,$$
 (3)

первым интегралом которого является уравнение (2).

Заметим, что к аналогичному виду может быть приведено и дифференциальное уравнение колебаний физического маятника, если вместо длины маятника l использовать его приведённую длину $l_{\rm np}=\frac{I}{ma}$, где a - расстояние от точки подвеса до центра тяжести маятника

В общем случае (при достаточно больших углах отклонения) решение уравнения (3) не может быть выражено через элементарные функции.

Если ограничиться рассмотрением малых колебаний, когда применима приближённая формула $\sin \alpha \approx \alpha$, то уравнение (3) перепишется в виде

$$\frac{d^2\alpha}{dt^2} + \frac{g}{l}\alpha = 0. (4)$$

Решение уравнения (4) будем искать в стандартном виде

$$\alpha = C\mathbf{e}^{kt}, \tag{5}$$

где C и k - некоторые постоянные. Подставляя (5) в (4) получим характеристическое уравнение

$$k^2 + \frac{g}{l} = 0,$$

откуда

$$k = \pm i \sqrt{\frac{g}{l}} = \pm i\omega$$
,

где $\omega = \sqrt{g/l}$.

Таким образом, общее решение уравнения (4) запишется следующим образом

$$\alpha = C_1 \mathbf{e}^{i\omega t} + C_2 \mathbf{e}^{-i\omega t} .$$

Пользуясь известной формулой Эйлера

$$e^{iz} = \cos z + i \sin z$$
,

полученное решение после несложных преобразований можно переписать в тригонометрической форме

$$\alpha = \alpha_0 \cos(\omega t + \delta), \tag{6}$$

где α_0 - *амплитуда* колебаний (угол максимального отклонения от положения равновесия), величина $\omega t + \delta$ называется ϕ азой колебаний, δ называется *начальной* фазой, а ω называется *циклической частотой* колебаний.

Уравнение (6) называется *уравнением гармонических колебаний*, а колебания, совершающиеся по закону синуса или косинуса, называются

гармоническими колебаниями. Тело, совершающее гармонические колебания, называется *гармоническим осциллятором*.

Таким образом, мы показали, что малые колебания математического маятника являются *гармоническими колебаниями* с *периодом*

$$T = \frac{2\pi}{\omega} = 2\pi \sqrt{\frac{l}{g}} \tag{7}$$

и частотой

$$v = \frac{1}{T} = \frac{\omega}{2\pi} = \frac{1}{2\pi} \sqrt{\frac{g}{l}}.$$

Из равенства (7) следует, что малые колебания математического маятника не зависят от амплитуды. Такие колебания называются *изохронными*.

Равенства (6), (7) получены колебаний маятника с малой амплитудой, когда можно пользоваться приближенной формулой $\sin \alpha \approx \alpha$. При больших амплитудах эта формула эта формула не применима и период колебаний будет зависеть от угла отклонения.

Чтобы найти зависимость периода колебаний от амплитуды, извлечём квадратный корень из уравнения (2)

$$\frac{d\alpha}{dt} = \sqrt{\frac{2g}{l} \left(\cos\alpha - \cos\alpha_0\right)},$$

и выполним разделение переменных

$$dt = \frac{d\alpha}{\sqrt{\frac{2g}{l}(\cos\alpha - \cos\alpha_0)}}.$$

Таким образом, период колебаний маятника определяется интегралом:

$$T = 4\sqrt{\frac{l}{2g}} \int_{0}^{\alpha_0} \frac{d\alpha}{\sqrt{\cos\alpha - \cos\alpha_0}} = 2\sqrt{\frac{l}{g}} \int_{0}^{\alpha_0} \frac{d\alpha}{\sqrt{\sin^2\frac{\alpha_0}{2} - \sin^2\frac{\alpha}{2}}}.$$
 (8)

Полученный интеграл относится к классу интегралов эллиптического типа и не может быть выражен через элементарные функции. Тем не менее, этот интеграл может быть вычислен в виде сходящегося тригонометрического ряда:

$$T = 2\pi \sqrt{\frac{l}{g}} \left\{ 1 + \left(\frac{1}{2}\right)^2 \sin^2 \frac{\alpha_0}{2} + \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^2 \sin^4 \frac{\alpha_0}{2} + \dots \right\}$$

$$+ \left(\frac{1 \cdot 3 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot \dots \cdot 2n}\right)^2 \sin^{2n} \frac{\alpha_0}{2} + \dots \right\} = 2\pi \sqrt{\frac{l}{g}} \sum_{n=0}^{\infty} c_n^2 \sin^{2n} \frac{\alpha_0}{2},$$
 (9)

где

$$c_0 = 1,$$
 $c_n = \frac{1 \cdot 3 \cdot ... \cdot (2n-1)}{2 \cdot 4 \cdot ... \cdot 2n}$ $(n > 0).$

Подробное вычисление интеграла (8) приведено в приложении.

Ограничиваясь членами второго порядка малости, получим приближенное выражение зависимости периода колебаний от амплитуды

$$T = 2\pi \sqrt{\frac{l}{g}} \left\{ 1 + \left(\frac{1}{2}\right)^2 \sin^2 \frac{\alpha_0}{2} \right\}. \tag{10}$$

Если можно пренебречь и членами второго порядка малости, то снова получим хорошо известную формулу (7) для периода малых колебаний математического маятника

$$T=2\pi\sqrt{\frac{l}{g}}.$$

Равенства (9)-(10) позволяют оценить систематическую погрешность, возникающую при использовании формулы (7) для вычисления периода колебаний с большими амплитудами.

Экспериментальная часть

Маятник представляет собой никелевый шарик диаметром 32 мм, подвешенный на тонкой прочной (нерастяжимой) нити, закреплённой на штативе. В месте закрепления нити установлена шкала для определения угла максимального отклонения нити (амплитуды колебаний). У основания

штатива закреплен световой барьер со счетчиком в виде перевёрнутой буквы **П**, который может работать в трёх режимах: подсчёт числа прохождений маятника через световой барьер, измерение полупериода колебаний и измерение периода колебаний. На передней панели счетчика имеется дисплей, отражающий результат измерения, переключатель переключения режимов и кнопка «сброс», нажатие которой сбрасывает результат предыдущего измерения и приводит счетчик в состояние готовности к новому измерению.

Полная длина маятника l (расстояние от точки подвеса до центра тяжести) складывается из длины нити $l_{\mbox{\tiny HUTU}}$ и радиуса шарика r , т.е.

$$l = l_{\text{HUTU}} + r. \tag{11}$$

ВНИМАНИЕ: 1. При проведении всех измерений периода колебаний *переключатель режимов работы счётчика должен находиться в крайнем правом положении* (измерение периода колебаний)!

2. При установке длины маятника можно либо с помощью формулы (11) определять необходимую длину нити, либо непосредственно измерять расстояние от точки подвеса до центра шарика. Однако при выполнении лабораторной работы должен использоваться только один из указанных способов.

Порядок выполнения работы

Задание 1. Измерение периода колебаний маятника при разных значениях его длины.

- 1.1. Установить длину маятника равной 100 см.
- 1.2. Отрегулировать положение точки подвеса так, чтобы в положении равновесия шарик пересекал световой барьер.
- 1.3. Отклонив маятник на угол не более $(3 \div 5)^{\circ}$ в направлении, перпендикулярном световому барьеру, нажать кнопку сброс (белая кнопка в левом нижнем углу счетчика) и отпустить шарик.

- 1.4. Результат измерения периода колебаний занести в таблицу 1.
- 1.5. Повторить действия пп. 1.3. 1.4. 5 раз.

Таблица 1. Зависимость периода малых колебаний математического маятника от его длины.

No		Длина маятника (см)			
		30	50	70	100
1	T_1				
2	T_2				
3	T_3				
4	T_4				
5	T_5				
6	$\langle T \rangle$				
7	ΔT				
8	g				

Задание 2. Измерение периода колебаний маятника при разных значениях амплитуды колебаний.

Установить длину маятника равной 30 см и измерить значения периода при 4 углах отклонения в интервале $10^\circ \le \alpha_0 \le 70^\circ$. Результаты измерения занести в таблицу 2.

Таблица 2. Зависимость периода колебаний математического маятника от амплитуды колебаний

	Амплитуда	Период колебаний
№	(угол отклонения α_0)	(сек)
1		
•••		
5		

Обработка результатов измерений.

1. Для каждого значения длины маятника вычислить и занести в таблицу 1 среднее значение периода малых колебаний

$$\left\langle T\right\rangle = \frac{1}{n} \sum_{i=1}^{n} T_{i}, \qquad (11)$$

где n - число измерений (n = 5), и погрешности измерения периода, вычислив их по формуле

$$\Delta T = t_{p,f} \sqrt{\frac{\sum_{i=1}^{n} (T_i - \langle T \rangle)^2}{n(n-1)}},$$
(12)

где коэффициенты $t_{p,f}$ зависят как от доверительной вероятности P , так и от числа измерений n . Значения коэффициентов Стьюдента $t_{p,f}$ приведены в таблице 3.

Таблица 3.

	Значения коэффициентов $t_{p,f}$				
f = n - 1	P = 0.9	P = 0.95	P = 0.99	P = 0.999	
1	6.31	12.71	63.66	636.6	
2	2.92	4.30	9.93	31.6	
3	2.35	3.18	5.84	12.9	
4	2.13	2.78	4.50	8.6	
5	2.02	2.57	4.08	6.9	
6	1.94	2.45	3.71	5.96	
7	1.90	2.37	3.50	5.4	
8	1.86	2.31	3.36	5.04	
9	1.83	2.26	3.25	4.78	
10	81	2.23	3.17	4.6	

При вычислении погрешности по формуле (12) значение доверительной вероятности P принять равным P = 0.95.

2. Используя данные строки 6 таблицы 1 для каждого значения длины маятника l получить и занести в таблицу 1 (строка 8) оценку значения ускорения свободного падения g с помощью равенства

$$g = \left(\frac{2\pi}{\langle T \rangle}\right)^2 l. \tag{13}$$

3. С помощью равенств, аналогичных равенствам (11) и (12) вычислить среднее значение $\langle g \rangle$ и погрешность Δg , принимая P=0.95. Результат записать в виде

$$g_{\text{эксп.}} = \langle g \rangle \pm \Delta g$$
.

Сравнить полученный результат с табличным значением.

- 4. Пользуясь формулой (7) и табличным значением ускорения свободного падения g, построить на миллиметровой бумаге по точкам график теоретической зависимости периода колебаний маятника от его длины.
- 5. На том же графике нанести найденные средние значения периодов колебаний и погрешности измерения.
- 6. На отдельном графике построить, пользуясь данными таблицы 2 зависимости периодов колебаний маятника от амплитуды колебаний. По оси абсцисс откладывать значения $\sin^2\frac{\alpha}{2}$.

Контрольные вопросы.

- 1. Какое движение механической системы называется колебательным? Что называется периодом и частотой колебаний?
 - 2. Какая система называется математическим маятником?
- 3. Какие колебания называются гармоническими? Что такое амплитуда и фаза колебаний.

- 4. Какие колебания называются изохронными? Являются ли колебания математического маятника изохронными? При каком условии колебания математического маятника можно считать изохронными?
- 5. Пользуясь формулами (9) и (10) оценить погрешность оценки периода колебаний математического маятника с помощью формулы (7) при углах отклонения $\alpha = 45^{\circ}$, 60° и 70° .
- 6. Полагая погрешности измерения периода колебаний, длины маятника и угла максимального отклонения равными соответственно ΔT , Δl и $\Delta \alpha$, записать формулы для косвенной погрешности измерения ускорения свободного падения g с использованием равенств (7) и (10).
- 7. Учитывая, что радиус шарика $r = 16 \,\mathrm{mm}$, его масса $m = 152.7 \,\mathrm{r}$, а расстояние от точки подвеса до центра тяжести $l = 30 \,\mathrm{cm}$, оценить относительную погрешность, которую дает формула периода малых колебаний математического маятника (7) по сравнению с формулой периода малых колебаний физического маятника

$$T = 2\pi \sqrt{\frac{I}{mgl}} \ .$$

При какой длине маятника эта погрешность будет превышать 5%.

Приложение

Чтобы найти зависимость периода колебаний от амплитуды, запишем закон сохранения энергии для колебаний математического маятника с конечной амплитудой

$$\frac{1}{2}l\left(\frac{d\alpha}{dt}\right)^{2} + g\left(\cos\alpha_{0} - \cos\alpha\right) = 0, \tag{\Pi 1}$$

извлечём из него квадратный корень

$$\frac{d\alpha}{dt} = \sqrt{\frac{2g}{l} \left(\cos\alpha - \cos\alpha_0\right)}$$

и выполним разделение переменных

$$dt = \frac{d\alpha}{\sqrt{\frac{2g}{l}(\cos\alpha - \cos\alpha_0)}}.$$
 (II 2)

Таким образом, период колебаний маятника определяется интегралом:

$$T = 4\sqrt{\frac{l}{2g}} \int_{0}^{\alpha_0} \frac{d\alpha}{\sqrt{\cos\alpha - \cos\alpha_0}} = 2\sqrt{\frac{l}{g}} \int_{0}^{\alpha_0} \frac{d\alpha}{\sqrt{\sin^2\frac{\alpha_0}{2} - \sin^2\frac{\alpha}{2}}}.$$
 (II 3)

Полученный интеграл относится к классу интегралов эллиптического типа и не может быть выражен через элементарные функции. Чтобы вычислить этот интеграл в виде сходящегося тригонометрического ряда, сделаем замену переменных с помощью равенства:

$$\sin\frac{\alpha}{2} = u\sin\frac{\alpha_0}{2} \,. \tag{\Pi 4}$$

Так как угол отклонения α меняется в интервале $0 \le \alpha \le \alpha_0$, то $0 \le u \le 1$. Дифференцирование равенства (П 4) дает

$$\frac{1}{2}\cos\frac{\alpha}{2}d\alpha = \sin\frac{\alpha_0}{2} du. \tag{\Pi 5}$$

Подставляя равенства (Π 4) и (Π 5) в (Π 3), получим,

$$T = 4\sqrt{\frac{l}{g}} \int_{0}^{1} \frac{du}{\sqrt{(1-u^{2})(1-k^{2}u^{2})}}, \qquad (\Pi 6)$$

где $k = \sin \frac{\alpha_0}{2}$, кроме того, мы учли, что $\cos (\alpha/2) = \sqrt{1 - k^2 u^2}$.

Так как на всем интервале интегрирования $k^2u^2 < 1$, то функцию $\left(1 - k^2u^2\right)^{-1/2}$ можно разложить в ряд

$$\frac{1}{\sqrt{1-k^2u^2}} = 1 + \frac{1}{2}k^2u^2 + \frac{1\cdot 3}{2\cdot 4}k^4u^4 + \dots$$
$$+ \frac{1\cdot 3\cdot \dots \cdot (2n-1)}{2\cdot 4\cdot \dots \cdot 2n}k^{2n}u^{2n} + \dots = \sum_{n=0}^{\infty} c_n k^{2n}u^{2n},$$

где

$$c_0 = 1,$$
 $c_n = \frac{1 \cdot 3 \cdot ... \cdot (2n-1)}{2 \cdot 4 \cdot ... \cdot 2n}$ $(n > 0).$

Подстановка этого выражения в (П 6) даёт следующее равенство

$$T = 4\sqrt{\frac{l}{g}} \sum_{n=0}^{\infty} c_n k^{2n} \int_{0}^{1} \frac{u^{2n} du}{\sqrt{1 - u^2}},$$

из которого, принимая во внимание известное соотношение

$$\int_{0}^{1} \frac{u^{2n} du}{\sqrt{1 - u^{2}}} = c_{n} \frac{\pi}{2},$$

получим

$$T = 2\pi \sqrt{\frac{l}{g}} \sum_{n=0}^{\infty} c_n^2 k^{2n} .$$

В развернутом виде это выражение примет вид

$$T = 2\pi \sqrt{\frac{l}{g}} \left\{ 1 + \left(\frac{1}{2}\right)^2 \sin^2 \frac{\alpha_0}{2} + \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^2 \sin^4 \frac{\alpha_0}{2} + \dots + \left(\frac{1 \cdot 3 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot \dots \cdot 2n}\right)^2 \sin^{2n} \frac{\alpha_0}{2} + \dots \right\}.$$
 (II 7)

Ограничиваясь членами второго порядка малости, получим приближенное выражение зависимости периода колебаний от амплитуды

$$T = 2\pi \sqrt{\frac{l}{g}} \left\{ 1 + \left(\frac{1}{2}\right)^2 \sin^2 \frac{\alpha_0}{2} \right\}. \tag{\Pi 8}$$

СПИСОК ЛИТЕРАТУРЫ

- 1. Савельев И.В. Курс общей физики. Механика. М.: Физматлит, 1990.
- 2. Сивухин Д.В. Курс общей физики: В 5 т. Т. 1: Механика. М. Наука. 1990.
- 3. Беззубов Ю.И., Иванова Т.М. Методические указания по выполнению графических работ в физическом практикуме, М., МГТУ, 1986.
- 4. Савельева А.И., Фетисов И.Н. Обработка результатов измерений при проведении физического эксперимента. Методические указания к лабораторной работе М-1 по курсу общей физики. М., МГТУ, 1999.

Оглавление

Введение	
Георетическая часть	3
Экспериментальная часть	
Схема установки	
Порядок выполнения работы	8
Обработка результатов измерений	
Контрольные вопросы.	
Приложение	12
СПИСОК ЛИТЕРАТУРЫ	